

Millennium Bridge

- Causes
 - · Lateral resonance not accounted for
 - Human sync to resonance
- Consequences
 - Closure June 2000 to Feb 2002
 - £5 million

Power Outages

- Self-organized criticality
- Unavoidable?
- Mitigation Side Effects
 - Can increase probability of large-scale catastrophes
 - Forest fire model

Importance

- Critical services (medical, sewer, mass transit etc) depend on electricity
- · Business depends on electricity
- Consumers depend on reliable electricity

Mitigation Strategies

- Increase critical number of individual line failures past which cascading failures occur
- 2. Strengthen power lines to better cope with spikes
- 3. Increase excess power margin
- Dobson tests these with the Oak Ridge-Pserc-Alaska model (OPA)

• Fewer small outages • More large outages

Dobson et al. 2003

Main Points

- Implementation of ideas to existing systems can't be taken at face value, they may have unintended, non-obvious repercussions
- A holistic approach needs to be taken to most modern problems to help prevent future failures.
 - This may in many cases require new methods of modeling which will begin to require more powerful computers to solve

Using Complexity Engineering

- Cheap systems
 - Easy to make
 - Easy to maintain
- Robust
 - Adapt to changing conditions
- Applications
 - Chemical systems
 - Swarm intelligence
 - · Software applications (Internet, 'Genetic Computing'
 - etc

Applications

- Few current applications, many ideas
- Supramolecular Chemistry
- Computing
- Collective Construction

Supramolecular Chemistry

- "Supramolecular chemistry refers to the area of chemistry that focuses on the noncovalent bonding interactions of molecules."
 - -Wikipedia
- "...constructing highly complex, functional chemical systems from components held together by intermolecular forces."
 - -J.M. Lehn

Supramolecular Chemistry

- · Information technologies
- Self-repairing polymers
- Catalysis
- Green Chemistry
- Sensors
- Medicine

J.M. Lehn

DNA Computing

- Massively parallel
- SIMD architecture
 - Can't do everyday computing, useful for combinatorial logic problems.
- Carefully constructed problems only

Wikipedia.org

Spin Computing

- · No energy to switch states of electrons
- Applications to storage are clear
- · Applications to processing less clear

Collective Construction

- Eusocial insects building structures
- Applications
 - Structures resulting from robots' collective behavior
 - No need for centralized manufacturing of consumer items
 - Structures made from the robots themselves
 - Ultimate Swiss Army knife

Collective Construction

- Simple autonomous units need only know the state of neighbors
 - Limited computing power available to the individual

Stewart et al.

Complexity Engineering

- New ways to approach problems
- All fields of engineering are affected by these ideas
- Transition period currently where emergent behavior is being accounted for rather than exploited

Discussion Points

- How comfortable are you with the idea of living around a skyscrapers built autonomously?
- Is there a limit to how far we can take collective construction?
- Do these technologies seem especially dangerous compared to nuclear and biological technologies?
- Are these technologies worth the economic risk (regarding personal manufacturing)?

References

- Stewart et al. Modeling a Deposition Process in Collective Construction. Turkish Journal of Electrical Engineering & Computer Sciences 2007.
- Dobson et al. Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization. Chaos 17, 2007.
- Dobson et al. <u>Blackout Mitigation Assessment in Power Transmission Systems.</u> System Sciences 2003.
- Buchli et al. <u>Complexity Engineering Harnessing Emergent Phenomena as Opportunities</u> for Engineering, 2005
- Strogatz, Steven. Sync. Hyperion, New York, 2003.
- Kurzweil, Ray. The Singularity is Near. Penguin Books, New York, 2005.
- Lehn, J.M. From Supramolecular Chemistry Towards Constitutional
 Chemistry and Adaptive Chemistry Chemical Society Reviews 2007